
Mitigating Java
Deserialization attacks from

within the JVM

Apostolos Giannakidis
@cyberApostle

BSides Luxembourg
20th October 2017

1

Who is
BACKGROUND

◈ Security Architect at Waratek

◈ AppSec

◈ Runtime protection

◈ Vulnerability and exploit analysis

◈ R&D exploit mitigation

◈ MSc Computer Science

2

Key Takeaways

◈ Black/White listing is not an enterprise-scale solution

◈ Instrumentation Agents can be manipulated

◈ Runtime Virtualization offers privilege separation and

memory isolation

◈ Runtime Privilege De-escalation safeguards application

components and the JVM from API Abuse
3

Attack Vectors
● RPC/IPC
● Message Brokers
● Caching
● Tokens / Cookies
● RMI
● JMX
● JMS
● ...

Why should I care?

Attack Surface
● Oracle
● Red Hat
● Apache
● IBM
● Symantec
● Cisco
● Atlassian
● Adobe
● ...

4

Impact & Popularity
● Reliable attack
● Easy to exploit
● All software layers
● OWASP Top 10 2017
● Oracle Java SE CPUs
● SF Muni breach

⬥ ~ 900 computers
⬥ ~$560k daily loss

Serialization 101

5

Deserialization of untrusted data

What is the problem here?

InputStream untrusted = request.getInputStream();
ObjectInputStream ois = new ObjectInputStream(untrusted);
SomeObject deserialized = (SomeObject) ois.readObject();

6

Deserialization of untrusted data

What is the problem here?

◈ Any available class can be deserialized
◈ Deserializing untrusted data can result in malicious behavior

⬥ Arbitrary code execution
⬥ Denial of Service
⬥ Remote command execution

⬦ Malware / Ransomware infection

InputStream untrusted = request.getInputStream();
ObjectInputStream ois = new ObjectInputStream(untrusted);
SomeObject deserialized = (SomeObject) ois.readObject();

7

How to solve the problem?

◈ Stop using deserialization
⬥ Requires significant refactoring
⬥ Requires architectural changes
⬥ Endpoints in other software layers?
⬥ Legacy software?

◈ Patch your software
⬥ Could break the application
⬥ “It is possible that some REST actions stop working” -

CVE-2017-9805
⬥ Oracle CPU October 2017 breaks backwards compatibility 8

https://cwiki.apache.org/confluence/display/WW/S2-052

Java Security Manager
◈ Custom Security Policy

Filtering Class names
◈ Serialization Filtering (JEP-290)
◈ Custom Instrumentation Agents

Runtime Virtualization
◈ Micro-compartmentalization
◈ Privilege De-escalation

Existing Runtime Mitigation Techniques

9

Java Security Manager
◈ Difficult to configure it correctly
◈ Performance issues
◈ No protection against DoS attacks
◈ No protection against deferred deserialization attacks

Critical Patch Update # vuls that can bypass the sandbox

October 2017 18

July 2017 26

April 2017 8

January 2017 14 10

Discussion Time: Filtering class names

 Blacklisting Whitelisting

11

 Blacklisting
● Requires profiling
● Never complete
● False sense of security
● Not possible if class is needed
● Can be bypassed

Discussion Time: Filtering class names

 Whitelisting
● Requires profiling
● Difficult to do it right
● False positives if misconfigured
● No protection if class is needed
● No protection against Golden

Gadgets
● Requires code reviews & testing

12

Whitelists are commonly mistreated

13http://activemq.apache.org/objectmessage.html

http://activemq.apache.org/objectmessage.html

Maintaining lists is a shity job

14

Serialization Filtering (JEP-290)
◈ Introduced in Java 9 on January 2017

⬥ Backported to Java 6, 7 and 8
⬥ But not available in older JVM versions (e.g. 7u21)

◈ White / Black listing approach
◈ 3 types of filters

⬥ Global Filter, Custom Filters, Built-in Filters
◈ Graph and Stream Limits

⬥ Requires knowledge of graphs, JVM internals and details
of all deployed code

⬥ Easy to get them wrong 15

Serialization Filtering problems

!!!!!

16

https://stackoverflow.com/questions/42364744/how-to-ignore-java-io-serialization-logger-in-java

https://stackoverflow.com/questions/42364744/how-to-ignore-java-io-serialization-logger-in-java

Serialization Filtering problems

17

Serialization Filtering problems

18

Instrumentation Agents

◈ Instrumentation API
◈ Black/ White listing approach

⬥ Global Filter
⬥ Custom Filters

◈ Known open source agents
⬥ NotSoSerial
⬥ Contrast-rO0
⬥ more...

19

What is the problem with Instrumentation Agents?

?

20

What is the problem with Instrumentation Agents?

◈ Instrumentation API was not designed for Security
From the Javadoc API:

Instrumentation is the addition of byte-codes to methods
for the purpose of gathering data.

Since the changes are purely additive, these tools
do not modify application state or behavior.

Examples of such benign tools include monitoring agents,
profilers, coverage analyzers, and event loggers.

21https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html

Single Fault Domain

◈ Instr. agents and application share the same address space

◈ No separation of privileges

◈ Nothing prevents an app exploit to modify agent code/data

◈ Think of the browser/plugin, kernel/user-space paradigm

◈ Agents can be compromised by application attack vectors

◈ No protection against insider attacks

◈ Inappropriate for Cloud environments

22

Instrumentation Agents can turn into Double Agents

◈ Reporting & Blacklisting mode not suitable for production

◈ Configuration tampering at runtime

⬥ Backdoor deployment

⬥ Agent becomes DoS attack vector

◈ Protection can be disabled

◈ Log entries cannot be trusted

23

Demo PoC: Turn Contrast-rO0 against itself

Setup
◈ Deploy the Contrast-rO0 instrumentation agent
◈ Use the default configuration file
◈ Run Tomcat with a vulnerable sample app

Goal
◈ Tamper agent’s runtime configuration
◈ Remove blacklisted classes (aka add backdoors)

24
Source: https://github.com/maestros/fileuploadapp

https://github.com/maestros/fileuploadapp

Let’s study the attack carefully

25

Source: Chris Frohoff
Marshalling Pickles
AppSecCali 2015

 ObjectInputStream.readObject()
 AnnotationInvocationHandler.readObject()
 Map(Proxy).entrySet()
 AnnotationInvocationHandler.invoke()

 LazyMap.get()
 ...

 InvokerTransformer.transform()
 Method.invoke()

 Runtime.exec()

26

Source: Chris Frohoff
ysoserial

LinkedHashSet.readObject()
 ...
 LinkedHashSet.add()

 ...
 Proxy(Templates).equals()
 ...
 ClassLoader.defineClass()
 Class.newInstance()
 ...
 Runtime.exec()

27

Let’s revisit the core of the problem

◈ The JVM is irrationally too permissive

◈ The JVM makes no effort to mitigate API Abuse attacks

◈ It is not even safeguarding its own invariants!

◈ All code and data can be accessible from any context

⬥ without a Security Manager

28

What do the standards suggest?
CERT Secure Coding Standards

◈ SER08-J. Minimize privileges before deserializing from a privileged context

◈ SEC58-J. Deserialization methods should not perform potentially

dangerous operations

MITRE

◈ CWE-250: Execution with Unnecessary Privileges

⬥ [...] isolate the privileged code as much as possible from other code.
Raise privileges as late as possible, and drop them as soon as possible.

◈ CWE-273: Improper Check for Dropped Privileges

⬥ Compartmentalize the system to have "safe" areas where trust
boundaries can be unambiguously drawn.

29

Runtime Virtualization Deserialization Mitigation

◈ Runtime Virtualization
⬥ Places security controls in an isolated address space
⬥ Offers complete visibility of all executed instructions

◈ Runtime Micro-compartmentalization
⬥ Defines boundaries around operations
⬥ Controlled communication between compartments

◈ Runtime Privilege De-escalation
⬥ Allows only non-privileged operations after each boundary
⬥ Safeguards JVM’s state
⬥ Protects against API abuse cases 30

Conclusion

◈ Maintaining lists does not scale and is a burden

◈ Filtering classes can be too low level for AppSec teams

◈ Instrumentation Agents can become Double Secret Agents

◈ Do not use agent’s Reporting & Blacklist mode in production

◈ The runtime platform must:

⬥ be secure-by-default

⬥ safeguard the developer’s code from being abused
31

Thanks!

Apostolos Giannakidis
@cyberApostle

BSides Luxembourg
20th October 2017

32

Discussion Time

◈ Bug hunting - Code reviewing deserialization gadgets
◈ Global Filters - Good or Bad?
◈ Attack detection using WAFs

Apostolos Giannakidis
@cyberApostle

BSides Luxembourg
20th October 2017

33

public class LookupTable implements Serializable {
private transient TableElement[] lookupTable;
public LookupTable(int size) {

 int elements = Math.min(Math.max(4,size),32);
 lookupTable = new TableElement[elements];

}
private void readObject(ObjectInputStream s)

 throws IOException, ClassNotFoundException {
 int numEntries = s.readInt();
 lookupTable = new TableElement[numEntries];

}
}

Code Review #1

34

public final class TempFile implements Serializable {
 private String fileName;
 private void readObject(ObjectInputStream s) {
 s.defaultReadObject(); // read the field
 }
 public String toString() {
 return fileName != null ? fileName : "";
 }

private void finalize() {
 new File(fileName).delete();

}
public File getTempFile() {

 return new File(fileName);
}

}

Code Review #2

35

Know what you need to protect

Audit
Serializable classes

Create
Threat Model

Re-evaluate
Threat Model when

class evolves

Identify all
deserialization

end-points

Add authentication
in each end-point

36

Risk-based Management using lists

◈ Who should be responsible for their maintenance?

◈ Difficult to apply risk-based management

⬥ How should a class’s risk profile be assessed?

⬥ Developers understand code

⬥ AppSec teams understand operations

⬦ OS, File System, Network, Database, etc.

37

What is the problem with Global Filters?

◈ A Global Filter is ... Global (Process-wide)

◈ Applies to all deserialization endpoints

⬥ Even if the endpoint deserializes internal data

◈ Whitelist must include classes from all software layers

⬥ How do you know what classes are needed by each layer?

◈ Whitelisting with Global Filter increases risk exposure

⬥ Global Filter defines your deserialization attack surface
38

Check WAFs for False Positives

 HashMap<String, String> map = new HashMap<>();

 map.put(

 “org.apache.commons.collections.functors.InvokerTransformer”,

 “calc.exe”);

 FileOutputStream file = new FileOutputStream("out.bin");

 ObjectOutputStream out = new ObjectOutputStream(file);

 out.writeObject(map);

 out.close();

39

 java.lang.reflect.Field configField = ClassLoader.getSystemClassLoader()

 .loadClass("com.contrastsecurity.rO0.RO0Agent").getField("config");

 Object configObj = configField.get(null);

 Class<?> configClass = configObj.getClass();

 java.lang.reflect.Field blacklistEnabledField =

 configClass.getDeclaredField("blacklistEnabled");

 blacklistEnabledField.setAccessible(true);

 blacklistEnabledField.setBoolean(configObj, false);

 java.lang.reflect.Field blacklistField =

 configClass.getDeclaredField("blacklist");

 blacklistField.setAccessible(true);

 blacklistField.set(configObj, null); 40

